It looks like you're using Internet Explorer 11 or older. This website works best with modern browsers such as the latest versions of Chrome, Firefox, Safari, and Edge. If you continue with this browser, you may see unexpected results.
材料科學與工程學系學科指引 Department of Materials Science and Engineering: 首頁 Home
Magnetic Memory Technology by Chi-Feng Pai; Denny D. TangSTAY UP TO DATE ON THE STATE OF MRAM TECHNOLOGY AND ITS APPLICATIONS WITH THIS COMPREHENSIVE RESOURCE Magnetic Memory Technology: Spin-Transfer-Torque MRAM and Beyond delivers a combination of foundational and advanced treatments of the subjects necessary for students and professionals to fully understand MRAM and other non-volatile memories, like PCM, and ReRAM. The authors offer readers a thorough introduction to the fundamentals of magnetism and electron spin, as well as a comprehensive analysis of the physics of magnetic tunnel junction (MTJ) devices as it relates to memory applications. This book explores MRAM's unique ability to provide memory without requiring the atoms inside the device to move when switching states. The resulting power savings and reliability are what give MRAM its extraordinary potential. The authors describe the current state of academic research in MRAM technology, which focuses on the reduction of the amount of energy needed to reorient magnetization. Among other topics, readers will benefit from the book's discussions of: An introduction to basic electromagnetism, including the fundamentals of magnetic force and other concepts An thorough description of magnetism and magnetic materials, including the classification and properties of magnetic thin film properties and their material preparation and characterization A comprehensive description of Giant magnetoresistance (GMR) and tunneling magnetoresistance (TMR) devices and their equivalent electrical model Spin current and spin dynamics, including the properties of spin current, the Ordinary Hall Effect, the Anomalous Hall Effect, and the spin Hall effect Different categories of magnetic random-access memory, including field-write mode MRAM, Spin-Torque-Transfer (STT) MRAM, Spin-Orbit Torque (SOT) MRAM, and others Perfect for senior undergraduate and graduate students studying electrical engineering, similar programs, or courses on topics like spintronics, Magnetic Memory Technology: Spin-Transfer-Torque MRAM and Beyond also belongs on the bookshelves of engineers and other professionals involved in the design, development, and manufacture of MRAM technologies.
Call Number: 登錄中
ISBN: 9781119562238
Publication Date: 2021
Semiconducting Polymers by Raquel Aparcida Domingues (Editor); Daniel Henrique do Amaral Corrêa (Editor)Semiconducting polymers are of great interest for applications in electroluminescent devices, solar cells, batteries, and diodes. This volume,Semiconducting Polymers: Synthesis and Photophysics Properties, provides a thorough introduction to the basic concepts of the photophysics of semiconducting polymers, as well as a description of the principal polymerization methods for luminescent polymers. Divided into two main sections, the book first introduces the advances made in polymer synthesis, and then goes on to focus on the photophysics aspects, also exploring how new advances in the area of controlled syntheses of semiconducting polymers are applied. An understanding of the photophysics process in this kind of material requires some knowledge of many different terms in this field, so a chapter on basics aspects is included.
Call Number: 登錄中
ISBN: 9781771888684
Publication Date: 2020
3D Printing for Energy Applications by Albert Tarancón (Editor); Vincenzo Esposito (Editor)3D PRINTING FOR ENERGY APPLICATIONS Explore current and future perspectives of 3D printing for the fabrication of high value-added complex devices 3D Printing for Energy Applications delivers an insightful and cutting-edge exploration of the applications of 3D printing to the fabrication of complex devices in the energy sector. The book covers aspects related to additive manufacturing of functional materials with applicability in the energy sector. It reviews both the technology of printable materials and 3D printing strategies itself, and its use in energy devices or systems. Split into three sections, the book covers the 3D printing of functional materials before delving into the 3D printing of energy devices. It closes with printing challenges in the production of complex objects. It also presents an interesting perspective on the future of 3D printing of complex devices. Readers will also benefit from the inclusion of: A thorough introduction to 3D printing of functional materials, including metals, ceramics, and composites An exploration of 3D printing challenges for production of complex objects, including computational design, multimaterials, tailoring AM components, and volumetric additive manufacturing Practical discussions of 3D printing of energy devices, including batteries, supercaps, solar panels, fuel cells, turbomachinery, thermoelectrics, and CCUS Perfect for materials scientists, 3D Printing for Energy Applications will also earn a place in the libraries of graduate students in engineering, chemistry, and material sciences seeking a one-stop reference for current and future perspectives on 3D printing of high value-added complex devices.
Call Number: 登錄中
ISBN: 9781119560753
Publication Date: 2021
Functional and Smart Materials by Chander Prakash; Sunpreet Singh; J. Paulo Davim"This book presents a comprehensive and broad-spectrum picture of the state-of-the-art research, development, and commercial prospective of various discoveries conducted in the real-world of functional and smart materials. The book presents the various synthesis and fabrication route of functional and smart materials for universal applications such as material science, mechanical engineering, manufacturing, metrology, nanotechnology, physics, chemical, biology, chemistry, civil engineering, and food science. The content of this book opens the various scientific horizons which are proved to be of utmost beneficial for uplifting the standards of the day-to-day practices in the biomedical domain. Noticeably, myriads of innovations in the materials science and engineering are transforming our day-to-day life in an extraordinary manner. The book has captured emerging areas of materials science and advanced manufacturing engineering and presents the recent trends in research for young researchers, field engineers, and academic professionals"--
Call Number: 登錄中
ISBN: 9780367275105
Publication Date: 2020
Organic Electronics for Electrochromic Materials and Devices by Hong MengOrganic Electronics for Electrochromic Materials and Devices Explore this comprehensive overview of organic electrochromic materials and devices from a leading voice in the industry Organic Electronics for Electrochromic Materials and Devices delivers a complete discussion of the major and key topics related to the phenomenon of electrochromism. The text covers the history of organic electrochromism, its fundamental principles, different types of electrochromic materials, the development of device structures and multi-function devices, characterizations of device performance, modern applications of electrochromic devices, and prospects for future electrochromic devices. The distinguished author places a strong focus on recent research results from universities and private firms from around the world and addresses the issues and challenges faced by those who apply organic electrochromic technology in the real world. With these devices quickly becoming the go-to display technology in the field of electronic information, this resource will quickly become indispensable to all who work or study in the field of optics. Readers will also benefit from the inclusion of: A thorough introduction to organic electrochromism, including its history and the mechanisms of electrochromic devices An exploration of polymer electrolytes for electrochromic applications, including their requirements and types A discussion of electrochromic small molecules, including the development of technology in viologen materials, fluoran and fluorescein dyes, violene-cyanine hybrids, triarylamine molecules and liquid crystal electrochromic materials. A perspective analysis of the redox-active conjugated polymers and triarylamine based non-conjugated polymers applied in electrochromic devices A treatment of Prussian blue and metallohexacyanates, including their backgrounds, technology development, crystal structures, synthesis, nanocomposites, and assembled electrochromic devices Perfect for materials scientists, polymer chemists, organic chemists, physical chemists, and inorganic chemists, Organic Electronics for Electrochromic Materials and Devices will also earn a place in the libraries of physicists and those who work in the optical industry who seek a one-stop reference that covers all aspects of organic electrochromic materials.